Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines.
med./bio.
[Keine Wirkung von extrem niederfrequenten Magnetfeldern auf das Zellwachstum oder die Anfangsphase der Zellproliferation von menschlichen Krebs-Zelllinien].
Cios A et al.
(2021):
The Influence of the Extremely Low Frequency Electromagnetic Field on Clear Cell Renal Carcinoma.
Akbarnejad Z et al.
(2017):
Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87).
Falone S et al.
(2016):
Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells.
Lee HC et al.
(2015):
Effect of extremely low frequency magnetic fields on cell proliferation and gene expression.
Destefanis M et al.
(2015):
Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines.
Brisdelli F et al.
(2014):
ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins.
Trillo MA et al.
(2013):
Retinoic acid inhibits the cytoproliferative response to weak 50Hz magnetic fields in neuroblastoma cells.
Trillo MA et al.
(2012):
Influence of a 50 Hz magnetic field and of all-transretinol on the proliferation of human cancer cell lines.
Buldak RJ et al.
(2012):
Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells.
Girgert R et al.
(2009):
Exposure of mcf-7 breast cancer cells to electromagnetic fields up-regulates the plasminogen activator system.
Masiuk M et al.
(2008):
The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fields.
Wolf FI et al.
(2005):
50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism.
Fedrowitz M et al.
(2004):
Significant differences in the effects of magnetic field exposure on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in two substrains of Sprague-Dawley rats.
Tokalov SV et al.
(2003):
Comparison of the reactions to stress produced by X-rays or electromagnetic fields (50Hz) and heat: induction of heat shock genes and cell cycle effects in human cells.
Verheyen GR et al.
(2003):
Effect of coexposure to 50 Hz magnetic fields and an aneugen on human lymphocytes, determined by the cytokinesis block micronucleus assay.
Harris PA et al.
(2002):
Possible attenuation of the G2 DNA damage cell cycle checkpoint in HeLa cells by extremely low frequency (ELF) electromagnetic fields.
Supino R et al.
(2001):
Sinusoidal 50 Hz magnetic fields do not affect structural morphology and proliferation of human cells in vitro.
Heredia-Rojas JA et al.
(2001):
Cytological effects of 60 Hz magnetic fields on human lymphocytes in vitro: sister-chromatid exchanges, cell kinetics and mitotic rate.
Johnson MT et al.
(2001):
Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro.
Mandeville R et al.
(2000):
Evaluation of the potential promoting effect of 60 Hz magnetic fields on N-ethyl-N-nitrosourea induced neurogenic tumors in female F344 rats.
Loberg LI et al.
(2000):
Cell viability and growth in a battery of human breast cancer cell lines exposed to 60 Hz magnetic fields.
Wei M et al.
(2000):
Exposure to 60 Hz magnetic fields and proliferation of human astrocytoma cells in vitro.
Rosenthal M et al.
(1989):
Effects of 50 Hertz electromagnetic fields on proliferation and on chromosomal alterations in human peripheral lymphocytes untreated or pretreated with chemical mutagens.
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.