Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1690 studies in total
  1. 733 studies
  2. 558 studies
  3. 509 studies
  4. 220 studies
  5. 203 studies
  6. 118 studies

DNA, proteins, and oxidative stress

558 studies in total
  1. 305 studies
  2. 197 studies
  3. 117 studies
  4. 42 studies

Gene/protein expression (in general) 117 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Kim JH et al. 2017 animal, mouse/C57BL/6 - 835 MHz - - mobile phone, mobile communications, RF field, CW continuous wave
Woelders H et al. 2017 animal, chicken/Leghorn (eggs), whole body embryonic development 1.8 GHz 0.38–0.45 mW/kg 22 days mobile communications, GSM, UMTS, TDMA, FDMA, RF field, DECT, W-LAN/WiFi
Manta AK et al. 2017 invertebrate, <i>Drosophila melanogaster</i>/Oregon-R (wildtype) - 1,800 MHz - - mobile phone, mobile communications, GSM
Kim JH et al. 2016 - - 835 MHz - - mobile phone, mobile communications
Siqueira EC et al. 2016 human cytokine expression in parotid gland saliva - - up to 200 minutes per month for up to 10 years mobile phone, mobile communications
de Pomerai DI et al. 2016 - - 1–1.8 GHz - - mobile phone, GSM, mobile communications, RF field, CW continuous wave
Valbonesi P et al. 2016 intact cell/cell culture, PC-12 cells/rat - 1.8 GHz 2 W/kg - mobile phone, GSM, mobile communications
Shivashankara AR et al. 2015 human - - - - mobile phone, mobile communications
Dasdag S et al. 2015 animal, rat/ Wistar albino, partial body: head microRNA expression in the brain 900 MHz 0.0369–2.023 W/kg continuous for 3 h/day on 7 days/week for 12 months GSM, mobile communications
Akhavan-Sigari R et al. 2014 human, partial body: head relationship between <i>p53</i> expression, <i>p53</i> mutations, survival time and cell phone usage 800–1,900 MHz 0.66–1.53 W/kg repeated daily exposure of less than 3 hours mobile phone, mobile communications
Lu Y et al. 2014 intact cell/cell culture, N9 cells (mouse microglial cells) and C8-D1A cells (mouse astrocyte type I cells) proinflammatory protein expression and gene expression; nitric oxide release; STAT3 activation, activation of microglia and astrocytes 1,800 MHz 2 W/kg intermittent for 1, 3, 6, 12, or 24 hours (5 min on and 10 min off) mobile phone, mobile communications, RF field, PW pulsed wave
Sepehrimanesh M et al. 2014 animal, rat/Sprague-Dawley, whole body protein expression in testes 900 MHz 0.19–1.22 W/g repeated daily exposure for 1 h on 30 consecutive days mobile phone, mobile communications
Valbonesi P et al. 2014 intact cell/cell culture, PC-12 cells (pheochromocytoma cell line from rat adrenal gland) gene expression and protein expression of Hsp70 and mitogen-activated protein kinase 1,800 MHz 2 W/kg intermittent, 5 min on/10 min off, for 4, 16, and 24 h mobile phone, GSM, mobile communications
Kesari KK et al. 2014 animal, rat/ Wistar, whole body DNA damage, protein expression, apoptosis and oxidative stress in brain 2,115 MHz 0.26–0.9 W/kg continuous for 2 hours/day for 60 days mobile phone, mobile communications
Vagula M et al. 2013 animal, zebrafish embryos (<i>Danio rerio</i>) - - - - mobile communications, mobile phone
Ni S et al. 2013 intact cell/cell culture, human eye lens epithelial cells (HLE B3) cell viability, oxidative stress 1,800 MHz 2–4 W/kg intermittent (5 minutes field "on"/10 minutes field "off") for up to 24 hours GSM, mobile communications, RF field, microwaves
Cervellati F et al. 2013 intact cell/cell culture, HTR-8/SVneo (human trophoblast cell line) connexin, integrin and estrogen receptor expression, cell ultrastructure, localization of estrogen receptor 1,800 MHz 2 W/kg continuous for 1 h mobile phone, GSM, mobile communications, co-exposure
Zhijian C et al. 2013 intact cell/cell culture, HMy2.CIR (human B-cell lymphoblastoid cells) protein expression 1.8 GHz 2 W/kg intermittent (5 min fields on/10 min fields off) for 24 hours mobile phone, GSM, mobile communications
Luo Q et al. 2013 human protein expression in chorionic villous tissue 900 MHz 1.46–8.8 W/kg continuous for 20 min. (according to "materials and methods" section) or 1 h (according to abstract)? mobile phone, GSM, mobile communications
Zhang Y et al. 2013 intact cell/cell culture, human lens epithelial cells (HLEC) - 1.8 GHz 2–4 W/kg - GSM, mobile communications, RF field
Liu Y et al. 2013 intact cell/cell culture, Raji cells (human Burkitt lymphoma cells) gene expression of EBV-EA (early antigen) 900 MHz 0.02 mW/g continuous for 4 h every day up to 4 weeks mobile phone, GSM, mobile communications
Bourthoumieu S et al. 2013 intact cell/cell culture expression and activating of p53 protein 900 MHz 4–32 W/kg continuous for 24 h mobile phone, GSM, mobile communications, PW pulsed wave
Kim HN et al. 2012 intact cell/cell culture, MCF10 A cells (human breast epithelial cells) Expression of the proteins Hsp27 and ERK1/2 and analysis of its phosphorylated forms 837 MHz 2–4 W/kg continuous for 4 h once or 2 h/day on 3 days mobile phone, CDMA, W-CDMA, mobile communications
Chen G et al. 2012 intact cell/cell culture, yeast (<i>Saccharomyces cerevisiae</i>)/S288C gene expression in yeast 50 Hz 4.7 W/kg continuous for 6 h GSM, mobile communications, RF field, PW pulsed wave, magnetic field, low frequency, 50/60 Hz
Fragopoulou AF et al. 2012 animal, mouse/BALB/c, whole body protein expression in the mouse brain 900 MHz 0.012–0.37 W/kg continuous for 3 h/day for 8 months mobile phone, digital mobile phone, GSM, mobile communications, PW pulsed wave, DECT, wireless transmitter
Karaca E et al. 2012 intact cell/cell culture DNA damage (micronucleus assay), gene expression of pro-apoptotic and anti-apoptotic genes 10.715 GHz 0.725 W/kg continuous for 6 h per day for 3 days mobile phone, mobile communications, RF field, microwaves
Dogan M et al. 2012 animal, rat/Wistar, whole body brain metabolism, oxidative stress, histopathology and apoptosis in the brain 1.9 Hz–2.2 GHz - every day two times 20 min (1x talking, 1x listening mode) from day 2 to day 21 digital mobile phone, GSM, mobile communications
Sakurai T et al. 2011 intact cell/cell culture, human astroglial cells SVGp12 gene expression 2.45 GHz 1–10 W/kg continuous for 1, 4 or 24 h mobile phone, mobile communications, microwaves, CW continuous wave, 2.45 GHz
Roux D et al. 2011 intact cell/cell culture, normal human epidermal keratinocytes gene expression 900 MHz 2.6–73 mW/kg continuous for 10 min mobile phone, mobile communications, CW continuous wave
Nylund R et al. 2010 intact cell/cell culture protein expression 1,800 MHz 2 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Kim KB et al. 2010 intact cell/cell culture, MCF-7 (human breast cancer cell line) protein expression 849 MHz 2–10 W/kg continuous for 1 h/day on 3 consecutive days mobile phone, CDMA, mobile communications
Sekijima M et al. 2010 intact cell/cell culture, A172 (human glioblastoma cells), H4 (neuroglioma cells) and IMR90 fibroblasts (from fetal lungs) gene expression, cell proliferation 2.1425 GHz 80–800 mW/kg continuous for 24 hr to 96 hr mobile phone base station, W-CDMA, mobile communications, RF field, CW continuous wave
Gerner C et al. 2010 intact cell/cell culture, Jurkat cells (human lymphoblastoid T cells), cultured fibroblasts, quiescent and inflammatory stimulated (by PHA and LPS) primary human white blood cells protein expression (effects on proteome) 1,800 MHz 2 W/kg 5 min on - 10 min off for 8 hr mobile communications, digital mobile phone, GSM, PW pulsed wave
Yan JG et al. 2009 animal, rat/Sprague-Dawley, whole body mRNA synthesis (gene expression) of several injury-associated proteins 800 MHz 0.9–1.8 W/kg 2 times 3 hr / day (with 30 min rest period between exposures), on 7 days/week for 18 weeks mobile communications, mobile phone, analog mobile phone, digital mobile phone, CDMA
Nylund R et al. 2009 intact cell/cell culture, EA.hy926 cells protein expression 1,800 MHz 2 W/kg continuous for 1 h mobile communications, digital mobile phone, GSM
Cervellati F et al. 2009 intact cell/cell culture, HTR-8/SVneo (human trophoblast cell line) connexin gene expression and protein expression, protein localization and cell ultrastructure 1,817 MHz 2 W/kg continuous for 1 h mobile communications, digital mobile phone, GSM, PW pulsed wave
Huang TQ et al. 2008 intact cell/cell culture, HEI-OC1 cells (immortalized mouse auditory hair cells) cell cycle, DNA damage, stress response, and gene expression 1,763 MHz 20 W/kg continuous for 24 h and 48 h mobile communications, mobile phone, CDMA
Engelmann JC et al. 2008 plant, plant cell suspension cultures of <i>Arabidopsis thaliana</i> gene expression 1.9 GHz 0.75–2 W/g continuous for 24 h UMTS, CDMA, mobile communications, RF field, microwaves
Huang TQ et al. 2008 intact cell/cell culture, Jurkat cells (human lymphoblastoid T cells) cellular and molecular changes (e.g. DNA damage, gene expression, cell proliferation, cell cycle progression) 1,762.5 MHz 2–10 W/kg repeated daily exposure, 1 h/day, for 1, 2, or 3 days digital mobile phone, CDMA, mobile communications
Nittby H et al. 2008 animal, rat/Fischer 344, whole body gene expression and gene ontology analysis for cortex and hippocampus 1,800 MHz 13–30 mW/kg continuous for 6 h mobile communications, digital mobile phone, GSM
Yan JG et al. 2008 animal, rat/Sprague-Dawley, whole body mRNA synthesis of several injury-associated proteins 1.9 GHz 0.9–1.8 W/kg repeated daily exposure, 2 x 3 h/day, for 18 weeks analog mobile phone, digital mobile phone, PCS, CDMA, mobile communications, microwaves
Karinen A et al. 2008 human, partial body: small area of forearm's skin protein expression 900 MHz 1.3 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Paparini A et al. 2008 animal, mouse/BALB/c/J, whole body gene expression 1,805.2 MHz 0.2–6.05 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications, microwaves
Li HW et al. 2007 intact cell/cell culture, human lens epithelial cells (HLEC) proteome changes: protein expression 1,800 MHz 1–3.5 W/kg continuous for 2 h digital mobile phone, GSM, mobile communications
Chauhan V et al. 2007 intact cell/cell culture, U87MG (human glioblastoma cells); Mono Mac 6 cells (human monocytes) gene expression 1.9 GHz 0.1–10 W/kg continuous for 24 h digital mobile phone, mobile communications
Zhao R et al. 2007 intact cell/cell culture gene expression 1,800 MHz 2 W/kg intermittent, 5 min on/10 min off, for 24 h GSM, mobile communications
Zhao TY et al. 2007 intact cell/cell culture, murine primary neurons and astrocytes cultures gene expression of apoptosis-associated genes 1,900 MHz - continuous for 2 h digital mobile phone, GSM, mobile communications, microwaves
Whitehead TD et al. 2006 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) gene expression 835.62 MHz 5 W/kg continuous for 24 h digital mobile phone, CDMA, FDMA, mobile communications
Gurisik E et al. 2006 intact cell/cell culture, human neuroblastoma cell line (SK-N-SH) and monocytes cell line (U937) gene expression, cell viability 900 MHz 0.2 W/kg continuous for 1 or 2 h digital mobile phone, GSM, mobile communications
Zeng Q et al. 2006 intact cell/cell culture, MCF-7 (human breast cancer cell line) protein and gene expression 1,800 MHz 2–3.5 W/kg intermittent, 5 min on/10 min off, for 24 h digital mobile phone, GSM, mobile communications