Study overviews

Mobile phone related articles are

Experimental studies on mobile communications

1360 studies in total
  1. 548 studies
  2. 426 studies
  3. 419 studies
  4. 182 studies
  5. 153 studies
  6. 88 studies

DNA

426 studies in total
  1. 219 studies
  2. 160 studies
  3. 85 studies
  4. 37 studies

Gene/protein expression (in general) 85 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Whitehead TD et al. 2006 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) gene expression 835.62 MHz 5 W/kg continuous for 24 h CDMA, FDMA, mobile communications
Whitehead TD et al. 2006 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) gene expression 835.62 MHz 5 W/kg continuous for 24 h digital mobile phone, CDMA, FDMA, mobile communications
Chauhan V et al. 2007 intact cell/cell culture, U87MG (human glioblastoma cells); Mono Mac 6 cells (human monocytes) gene expression 1.9 GHz 0.1–10 W/kg continuous for 24 h digital mobile phone, mobile communications
Engelmann JC et al. 2008 plant, plant cell suspension cultures of <i>Arabidopsis thaliana</i> gene expression 1.9 GHz 0.75–2 W/g continuous for 24 h UMTS, CDMA, mobile communications, RF field, microwaves
Bourthoumieu S et al. 2013 intact cell/cell culture expression and activating of p53 protein 900 MHz 4–32 W/kg continuous for 24 h mobile phone, GSM, mobile communications, PW pulsed wave
Huang TQ et al. 2008 intact cell/cell culture, HEI-OC1 cells (immortalized mouse auditory hair cells) cell cycle, DNA damage, stress response, and gene expression 1,763 MHz 20 W/kg continuous for 24 h and 48 h mobile communications, mobile phone, CDMA
Goswami PC et al. 1999 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) stress response (proto-oncogene expression and DNA-binding activity of transcription factors) 835.62 MHz 0.6 W/kg continuous for 24 h or 4 days mobile communications, CDMA
Sekijima M et al. 2010 intact cell/cell culture, A172 (human glioblastoma cells), H4 (neuroglioma cells) and IMR90 fibroblasts (from fetal lungs) gene expression, cell proliferation 2.1425 GHz 80–800 mW/kg continuous for 24 hr to 96 hr mobile phone base station, W-CDMA, mobile communications, RF field, CW continuous wave
Fragopoulou AF et al. 2012 animal, mouse/BALB/c, whole body protein expression in the mouse brain 900 MHz 0.012–0.37 W/kg continuous for 3 h/day for 8 months mobile phone, digital mobile phone, GSM, mobile communications, PW pulsed wave, DECT, wireless transmitter
Dasdag S et al. 2015 animal, rat/ Wistar albino, partial body: head microRNA expression in the brain 900 MHz 0.0369–2.023 W/kg continuous for 3 h/day on 7 days/week for 12 months GSM, mobile communications
Whitehead TD et al. 2005 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) <i>c-Fos</i> mRNA expression 835.62 MHz 5.2–10 W/kg continuous for 4 days CDMA, FDMA, TDMA, mobile communications
Qutob SS et al. 2006 intact cell/cell culture, U87MG (human glioblastoma cells) gene expression 1.9 GHz 0.1–10 W/kg continuous for 4 h digital mobile phone, mobile communications
Liu Y et al. 2013 intact cell/cell culture, Raji cells (human Burkitt lymphoma cells) gene expression of EBV-EA (early antigen) 900 MHz 0.02 mW/g continuous for 4 h every day up to 4 weeks mobile phone, GSM, mobile communications
Kim HN et al. 2012 intact cell/cell culture, MCF10 A cells (human breast epithelial cells) Expression of the proteins Hsp27 and ERK1/2 and analysis of its phosphorylated forms 837 MHz 2–4 W/kg continuous for 4 h once or 2 h/day on 3 days mobile phone, CDMA, W-CDMA, mobile communications
Nittby H et al. 2008 animal, rat/Fischer 344, whole body gene expression and gene ontology analysis for cortex and hippocampus 1,800 MHz 13–30 mW/kg continuous for 6 h mobile communications, digital mobile phone, GSM
Chen G et al. 2012 intact cell/cell culture, yeast (<i>Saccharomyces cerevisiae</i>)/S288C gene expression in yeast 50 Hz 4.7 W/kg continuous for 6 h GSM, mobile communications, RF field, PW pulsed wave, magnetic field, low frequency, 50/60 Hz
Karaca E et al. 2012 intact cell/cell culture DNA damage (micronucleus assay), gene expression of pro-apoptotic and anti-apoptotic genes 10.715 GHz 0.725 W/kg continuous for 6 h per day for 3 days mobile phone, mobile communications, RF field, microwaves
Finnie JW 2005 animal, mouse/C57BL/6NTac, whole body <i>c-fos</i> expression in the brain (to assess neural injury) 900 MHz 4 W/kg continuous for 60 min GSM, mobile communications, microwaves
Dogan M et al. 2012 animal, rat/Wistar, whole body brain metabolism, oxidative stress, histopathology and apoptosis in the brain 1.9 Hz–2.2 GHz - every day two times 20 min (1x talking, 1x listening mode) from day 2 to day 21 digital mobile phone, GSM, mobile communications
Zhijian C et al. 2013 intact cell/cell culture, HMy2.CIR (human B-cell lymphoblastoid cells) protein expression 1.8 GHz 2 W/kg intermittent (5 min fields on/10 min fields off) for 24 hours mobile phone, GSM, mobile communications
Ni S et al. 2013 intact cell/cell culture, human eye lens epithelial cells (HLE B3) cell viability, oxidative stress 1,800 MHz 2–4 W/kg intermittent (5 minutes field "on"/10 minutes field "off") for up to 24 hours GSM, mobile communications, RF field, microwaves
Lu Y et al. 2014 intact cell/cell culture, N9 cells (mouse microglial cells) and C8-D1A cells (mouse astrocyte type I cells) proinflammatory protein expression and gene expression; nitric oxide release; STAT3 activation, activation of microglia and astrocytes 1,800 MHz 2 W/kg intermittent for 1, 3, 6, 12, or 24 hours (5 min on and 10 min off) mobile phone, mobile communications, RF field, PW pulsed wave
Ivaschuk OI et al. 1997 intact cell/cell culture, P12 (rat pheochromocytoma cells) expression of the immediate early genes encoding c-<i>jun</i> and c-<i>fos</i> 836.55 MHz 2.6 µW/g intermittent, 20 min on/off, for 20, 60 and 100 min NADC, TDMA, mobile communications
Remondini D et al. 2006 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells), EA.hy926 cells (human endothelial cells), NB69 cells (human neuroblastoma cells), CHME5 cells (human microglial cells), U937 cells (monocytic lymphoblastoma cells), and T lymphocytes gene expression 900 MHz 1–2.5 W/kg intermittent, 5 min on/10 min off, for 24 h digital mobile phone, GSM, mobile communications, microwaves
Zeng Q et al. 2006 intact cell/cell culture, MCF-7 (human breast cancer cell line) protein and gene expression 1,800 MHz 2–3.5 W/kg intermittent, 5 min on/10 min off, for 24 h digital mobile phone, GSM, mobile communications
Zhao R et al. 2007 intact cell/cell culture gene expression 1,800 MHz 2 W/kg intermittent, 5 min on/10 min off, for 24 h GSM, mobile communications
Valbonesi P et al. 2014 intact cell/cell culture, PC-12 cells (pheochromocytoma cell line from rat adrenal gland) gene expression and protein expression of Hsp70 and mitogen-activated protein kinase 1,800 MHz 2 W/kg intermittent, 5 min on/10 min off, for 4, 16, and 24 h mobile phone, GSM, mobile communications
Chauhan V et al. 2006 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells) and Mono Mac 6 cells (human monocytes) gene expression 1.9 GHz 1–10 W/kg intermittent, 5 min on/10 min off, for 6 h digital mobile phone, mobile communications
Nikolova T et al. 2005 intact cell/cell culture, ES R1 cells (mouse embryonic stem cells) different effects (e.g. different transcript levels, genotoxicity, proliferation, apoptosis, cytotoxicity, mitochondrial function) 50 Hz–1.25 kHz 1.5 W/kg intermittent, 5 min on/30 min off, for 6 h and 48 h GSM, mobile communications, 50/60 Hz, power transmission line
Czyz J et al. 2004 intact cell/cell culture, pluripotent R1 embryonic stem cells, wild-type D3 and p53-deficient; embryonic carcinoma cells of line P19 gene expression, cell differentiation, cell cycle phase, and proliferation 1.71 GHz 0.4–16 W/kg intermittent, 5/30 min On/Off cycles for 6 or 48 hours GSM, mobile communications
Sepehrimanesh M et al. 2014 animal, rat/Sprague-Dawley, whole body protein expression in testes 900 MHz 0.19–1.22 W/g repeated daily exposure for 1 h on 30 consecutive days mobile phone, mobile communications
Akhavan-Sigari R et al. 2014 human, partial body: head relationship between <i>p53</i> expression, <i>p53</i> mutations, survival time and cell phone usage 800–1,900 MHz 0.66–1.53 W/kg repeated daily exposure of less than 3 hours mobile phone, mobile communications
Huang TQ et al. 2008 intact cell/cell culture, Jurkat cells (human lymphoblastoid T cells) cellular and molecular changes (e.g. DNA damage, gene expression, cell proliferation, cell cycle progression) 1,762.5 MHz 2–10 W/kg repeated daily exposure, 1 h/day, for 1, 2, or 3 days digital mobile phone, CDMA, mobile communications
Yan JG et al. 2008 animal, rat/Sprague-Dawley, whole body mRNA synthesis of several injury-associated proteins 1.9 GHz 0.9–1.8 W/kg repeated daily exposure, 2 x 3 h/day, for 18 weeks analog mobile phone, digital mobile phone, PCS, CDMA, mobile communications, microwaves
Siqueira EC et al. 2016 human cytokine expression in parotid gland saliva - - up to 200 minutes per month for up to 10 years mobile phone, mobile communications