Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1693 studies in total
  1. 735 studies
  2. 560 studies
  3. 509 studies
  4. 220 studies
  5. 203 studies
  6. 118 studies

DNA, proteins, and oxidative stress

560 studies in total
  1. 305 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies

Gene/protein expression (in general) 118 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Huang TQ et al. 2008 intact cell/cell culture, Jurkat cells (human lymphoblastoid T cells) cellular and molecular changes (e.g. DNA damage, gene expression, cell proliferation, cell cycle progression) 1,762.5 MHz 2–10 W/kg repeated daily exposure, 1 h/day, for 1, 2, or 3 days digital mobile phone, CDMA, mobile communications
Nylund R et al. 2006 intact cell/cell culture, EA.hy926 cells and EA.hy926v1 cells gene and protein expression 900 MHz 2.8 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Zeng Q et al. 2006 intact cell/cell culture, MCF-7 (human breast cancer cell line) protein and gene expression 1,800 MHz 2–3.5 W/kg intermittent, 5 min on/10 min off, for 24 h digital mobile phone, GSM, mobile communications
Gurisik E et al. 2006 intact cell/cell culture, human neuroblastoma cell line (SK-N-SH) and monocytes cell line (U937) gene expression, cell viability 900 MHz 0.2 W/kg continuous for 1 or 2 h digital mobile phone, GSM, mobile communications
Li HW et al. 2007 intact cell/cell culture, human lens epithelial cells (HLEC) proteome changes: protein expression 1,800 MHz 1–3.5 W/kg continuous for 2 h digital mobile phone, GSM, mobile communications
Karinen A et al. 2008 human, partial body: small area of forearm's skin protein expression 900 MHz 1.3 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Nylund R et al. 2010 intact cell/cell culture protein expression 1,800 MHz 2 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Dogan M et al. 2012 animal, rat/Wistar, whole body brain metabolism, oxidative stress, histopathology and apoptosis in the brain 1.9 Hz–2.2 GHz - every day two times 20 min (1x talking, 1x listening mode) from day 2 to day 21 digital mobile phone, GSM, mobile communications
Remondini D et al. 2006 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells), EA.hy926 cells (human endothelial cells), NB69 cells (human neuroblastoma cells), CHME5 cells (human microglial cells), U937 cells (monocytic lymphoblastoma cells), and T lymphocytes gene expression 900 MHz 1–2.5 W/kg intermittent, 5 min on/10 min off, for 24 h digital mobile phone, GSM, mobile communications, microwaves
Zhao TY et al. 2007 intact cell/cell culture, murine primary neurons and astrocytes cultures gene expression of apoptosis-associated genes 1,900 MHz - continuous for 2 h digital mobile phone, GSM, mobile communications, microwaves
Paparini A et al. 2008 animal, mouse/BALB/c/J, whole body gene expression 1,805.2 MHz 0.2–6.05 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications, microwaves
Qutob SS et al. 2006 intact cell/cell culture, U87MG (human glioblastoma cells) gene expression 1.9 GHz 0.1–10 W/kg continuous for 4 h digital mobile phone, mobile communications
Chauhan V et al. 2006 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells) and Mono Mac 6 cells (human monocytes) gene expression 1.9 GHz 1–10 W/kg intermittent, 5 min on/10 min off, for 6 h digital mobile phone, mobile communications
Chauhan V et al. 2007 intact cell/cell culture, U87MG (human glioblastoma cells); Mono Mac 6 cells (human monocytes) gene expression 1.9 GHz 0.1–10 W/kg continuous for 24 h digital mobile phone, mobile communications
Ghatei N et al. 2017 animal, mouse/BALB/c (pregnant females and young animal) - 900–1,800 MHz - - mobile communications
Gökçek-Saraç Ç et al. 2017 animal, rat/Wistar albino - 900 MHz - - mobile communications
Wang Y et al. 2021 invertebrate, <i>Drosophila melanogaster</i>, whole body - 3.5 GHz - - mobile communications, 5G
Dasgupta S et al. 2022 animal, zebrafish (<i>Danio rerio</i>) - 3.5 GHz - - mobile communications, 5G, mobile phone
Goswami PC et al. 1999 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) stress response (proto-oncogene expression and DNA-binding activity of transcription factors) 835.62 MHz 0.6 W/kg continuous for 24 h or 4 days mobile communications, CDMA
Lamkowski A et al. 2018 intact cell/cell culture, human peripheral blood - 900 MHz - - mobile communications, CW continuous wave
Maalouf J et al. 2023 animal, C57BL/6J mouse - 900 MHz - - mobile communications, CW continuous wave, RF field
Lameth J et al. 2020 animal, rat/Sprague-Dawley (wild type and transgenic hSOD1<sup>G93A</sup>), partial body: head - 1,800 MHz - - mobile communications, GSM
Ozgur E et al. 2021 intact cell/cell culture - 900–2,100 MHz - - mobile communications, GSM
Tohidi FZ et al. 2021 animal, mouse/BALB/c - 900–1,800 MHz - - mobile communications, GSM, CDMA, mobile phone
Chen C et al. 2021 intact cell/cell culture, mouse embryonic stem cells, Neuro-2a (mouse neuroblastoma) cells - 1,800 MHz - - mobile communications, GSM, RF field