Study overviews

Mobile phone related articles are

Experimental studies on mobile communications

1464 studies in total
  1. 607 studies
  2. 466 studies
  3. 448 studies
  4. 192 studies
  5. 166 studies
  6. 96 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Thorlin T et al. 2006 intact cell/cell culture cell reactivity/cell damage 906.6 MHz 3.1–54 W/kg continuous for 4, 8, and 24 h digital mobile phone, GSM, mobile communications, microwaves
Kang KA et al. 2014 intact cell/cell culture, NIH3T3 cells (mouse fibroblasts), U87 (human glioma cells), PC12 (rat pheochromocytoma cells), SH-SY5Y (human neuroblastoma cells) cell viability, oxidative stress 837–1,950 MHz 2 W/kg continuous for 2 hours mobile phone, CDMA, W-CDMA, mobile communications, co-exposure
Jin YB et al. 2011 animal, rat/Sprague-Dawley, whole body chronic illness (body and organ weights, urinalysis, haematological and blood biochemical analysis, histopathological changes) 849 MHz–1.95 GHz 2 W/kg continuous for 45 min/day, 5 days/week for 12 months CDMA, W-CDMA, mobile communications
Kowalczuk C et al. 2010 intact cell/cell culture, tissue slices, cell suspensions, IMR 32 (human neuroblastoma cells), G361 (human melanoma cells), HF-19 (human fibroblasts), N2a (murine neuroblastoma cells; differentiated and non-differentiated); CHO (Chinese hamster ovary) cells demodulation ability of living cells and tissues (second harmonic generation) 880–890 MHz 2.5–10.6 mW/g < 10 minutes (typically, a second harmonic test took around 2-3 min.) mobile phone, mobile communications, RF field, CW continuous wave
Sommer AM et al. 2009 animal, mouse/C57BL, whole body developmental parameters, reproductive ability in parental animals 2 GHz 0.08–1.3 W/kg continuous for 570 days with a 30 min break each night UMTS, mobile communications
Peyman A et al. 2001 different tissues in dead rats (brain, skin, skull, messeter muscle, salivary glands, liver, kidney, spleen, tongue, tail) dielectric properties of rat tissues 130 MHz–10 GHz - - mobile communications, digital mobile phone, GSM, UMTS, RF field, microwaves
Weisbrot D et al. 2003 invertebrate, <i>Drosophila melanogaster</i>/Oregon-R, whole body different biological effects on <i>Drosophila melanogaster</i> 1,900 MHz 1.4 W/kg repeated daily exposure, 2 times 60 min with a 4-h interval, for 10 days GSM, mobile communications
Meral I et al. 2007 animal, guinea pig, whole body different blood vitamin levels, oxidative stress in the brain 890–915 MHz 0.95 W/kg continuous for 12 h/day (11 h 45 min stand-by mode, 15 min speaking mode) on 30 days mobile communications, mobile phone, RF field
Hansen V et al. 1996 DNA/RNA, bacterium, virus/bacteriophages, <i>Escherichia coli</i>/WP2, WP2uvrA, W575 effects on biological material (enzyme activity, survival of bacteriophages, and DNA damage) 900 MHz 11.75–87 mW/kg continuous for about 100 days or about 30 days GSM, mobile communications
Terao Y et al. 2007 human, partial body: head (right ear) effects on eye (cortical processing/saccade performance) 800 MHz 0.054 W/kg continuous for 30 min digital mobile phone, TDMA, mobile communications
Okano T et al. 2010 human, partial body: head (left ear) effects on eye (cortical processing/saccade performance) 1.95 GHz - continuous for 30 min mobile phone, mobile communications, PW pulsed wave
Hässig M et al. 2009 animal, calf, whole body effects on eye (nuclear cataract; oxidative stress) - - continuous for 1 year mobile communications, mobile phone base station, GSM, UMTS
Acar GO et al. 2009 animal, rabbit/New Zealand albino, partial body: ear effects on facial nerves and surrounding soft tissue 1,900 MHz 3.72 W/kg continuous for 25 min mobile communications, mobile phone, microwaves
Fasseas MK et al. 2015 invertebrate, nematode (<i>Caenorhabditis elegans</i>)/N2 (wild type), DR1572, DR26, TK22, CL4176, NL5901, RB864, CL2070 (<i>hsp-16.2</i>), CF1553 (<i>sod-3</i>), SJ4005 (<i>hsp-4</i>), LG333 (<i>skn-1</i>), LD1171 (<i>gcs-1</i>) and CL2166 (<i>gst-4</i>) effects on fertility, neurodegeneration, short-term memory, chemotaxis, stress, apoptosis, life span and growth of <i>Caenorhabditis elegans</i> 1,780–1,800 MHz - continuous for 0.5, 1, 3, 6 or 24 h mobile phone, GSM, mobile communications, PW pulsed wave, DECT, W-LAN/WiFi
Weber S et al. 2008 homeopathically diluted (D30) thyroxine effects on homeopathically prepared thyroxine 50 Hz–2.45 GHz - continuous for 100 s mobile communications, microw. oven/heating device, 2.45 GHz, 50/60 Hz
Suanjak-Treidl E et al. 2006 homeopathically diluted (D30) thyroxine effects on homeopathically prepared thyroxine 900–1,800 MHz 0.8 W/kg intermittent, 5 x 20 s digital mobile phone, GSM, mobile communications
Tafforeau M et al. 2002 plant, flax (<i>Linum usitatissimum</i> L. var Ariane) effects on plants/number of meristems 0.9 GHz - continuous for 2 h digital mobile phone, GSM, mobile communications
Sharma VP et al. 2010 plant, mung bean (<i>Vigna radiata</i>)/Wilczek cv. ML-5 effects on plants: germination and growth 900 MHz - continuous for 0.5 h, 1 h, 2 h, 4 h mobile phone, GSM, mobile communications
Kumar A et al. 2016 plant, maize seedlings (<i>Zea mays</i> L), whole body effects on plants: growth and carbohydrate metabolism 1,800 MHz 1.69 W/kg continuous for 30 minutes mobile phone, mobile communications, CW continuous wave
Soran ML et al. 2014 plant, parsley (<i>Petroselinum crispum</i>), dill (<i>Anethum graveolens</i>), celery (<i>Apium graveolens</i>), whole body effects on plants: leaf anatomy, etheric oil content and volatile emissions 860–910 MHz - continuous for 3 weeks GSM, mobile communications, W-LAN/WiFi
Singh HP et al. 2012 plant, mung bean (<i>Vigna radiata</i>)/Wilczek, hypocotyls effects on plants: root growth (rhizogenesis) and oxidative stress 900 MHz - continuous for 0.5, 1, 2 h mobile phone, GSM, mobile communications
Sharma VP et al. 2009 plant, mung bean effects on plants: root growth and oxidative stress 900 MHz - continuous for 0.5 h, 1 h, 2 hr, 4 hr mobile phone, GSM, mobile communications
Zareen N et al. 2009 animal, chicken embryos/Desi (eggs), whole body effects on the eye: retinal differentiation 1,800 MHz - 15 min twice daily for up to 15 days mobile phone, mobile communications, RF field
Irlenbusch L et al. 2007 human, partial body: head effects on the visual system 902.4 MHz 0.003–0.007 W/kg continuous for 30 min digital mobile phone, GSM, mobile communications
Esmekaya MA et al. 2010 animal, rat/Wistar, whole body effects on thyroid gland 900 MHz 1.35 W/kg continuous for 20 min./day on 21 days mobile phone, GSM, mobile communications, PW pulsed wave