Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1694 studies in total
  1. 736 studies
  2. 560 studies
  3. 510 studies
  4. 220 studies
  5. 204 studies
  6. 118 studies

DNA, proteins, and oxidative stress

560 studies in total
  1. 305 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Phillips JL et al. 1998 intact cell/cell culture, Molt-4 cells single-strand breaks (comet assay) 813.5625 MHz 2.4–26 µW/g intermittent 20 min on/off for 2, 3 and 21 hours iDEN, NADC, TDMA, mobile communications
Qureshi ST et al. 2017 plant, chickpea (<i>Cicer arietinum</i> L.) (root tips) - 900 MHz–3.31 GHz - - mobile communications, mobile phone, GSM, wireless transmitter
Ravaioli F et al. 2023 intact cell/cell culture, HeLa cells, neuroblastoma BE(2)C cells and neuroblastoma SH-SY5Y cells - 900 MHz - - mobile communications, GSM, RF field
Romeo S et al. 2020 blood samples - 1,950 MHz - - W-CDMA, mobile communications, RF field, CW continuous wave, co-exposure
Sahin D et al. 2016 animal, rat/Wistar albino, whole body oxidative DNA damage in the brain 2,100 MHz 0.4 W/kg 6 h/day on 5 consecutive days/week for 2 weeks mobile phone, UMTS, mobile communications
Saka VP et al. 2023 intact cell/cell culture, primary cortical neurons (of rat) - 2,100 MHz - - mobile communications, mobile phone, 4G, GSM, also other exposures without EMF, co-exposure
Sakuma N et al. 2006 intact cell/cell culture, A172 (human glioblastoma cells) and IMR90 fibroblasts (from fetal lungs) DNA damage 2.1425 GHz 80–800 mW/kg continuous for 2 or 24 hours UMTS, mobile communications
Salmen SH et al. 2018 bacterium, <i>Staphylococcus aureus</i>, <i>Staphylococcus epidermidis</i>, <i>Pseudomonas aeruginosa</i> - 900–1,800 MHz - - mobile communications, RF field, co-exposure
Sangle V et al. 2023 human - - - - mobile communications, mobile phone, GSM, CDMA
Sannino A et al. 2009 intact cell/cell culture DNA damage (micronucleus formation) 900 MHz 1.25–10 W/kg continuous for 20 h mobile phone, mobile communications, RF field