Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1693 studies in total
  1. 735 studies
  2. 560 studies
  3. 509 studies
  4. 220 studies
  5. 203 studies
  6. 118 studies

DNA, proteins, and oxidative stress

560 studies in total
  1. 305 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies

Gene/protein expression (HSP) 42 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Silva V et al. 2016 intact cell/cell culture, primary human thyroid cells (from normal thyroid tissue) - 895–900 MHz - - mobile phone, mobile communications
Ohtani S et al. 2016 - - 2.14 GHz - - W-CDMA, mobile communications, RF field
Bourdineaud JP et al. 2017 invertebrate, earthworm (<i>Eisenia fetida</i>) - 900 MHz - - mobile communications, mobile phone
Poque E et al. 2021 intact cell/cell culture - 1,800 MHz - - GSM, mobile communications, W-LAN/WiFi, CW continuous wave, PW pulsed wave
Wang Y et al. 2021 invertebrate, <i>Drosophila melanogaster</i>, whole body - 3.5 GHz - - mobile communications, 5G
Ushiyama A et al. 2014 animal, rat/Sprague-Dawley - 2.14 GHz - - W-CDMA, mobile communications, mobile phone
Migdal P et al. 2023 invertebrate, honeybee - 900 MHz - - mobile communications, mobile phone, RF field
Molina-Montenegro MA et al. 2023 invertebrate, honey bee (<i>Apis mellifera</i>) and other pollinators - - - - mobile communications, mobile phone base station, power transmission line, magnetic field
Kesari KK et al. 2014 animal, rat/ Wistar, whole body DNA damage, protein expression, apoptosis and oxidative stress in brain 2,115 MHz 0.26–0.9 W/kg continuous for 2 hours/day for 60 days mobile phone, mobile communications
Kim HN et al. 2012 intact cell/cell culture, MCF10 A cells (human breast epithelial cells) Expression of the proteins Hsp27 and ERK1/2 and analysis of its phosphorylated forms 837 MHz 2–4 W/kg continuous for 4 h once or 2 h/day on 3 days mobile phone, CDMA, W-CDMA, mobile communications
Sanchez S et al. 2008 animal, rat/hairless, partial body: right part of the back Heat shock protein expression 900 MHz 2.4–5.8 W/kg continuous for 2 h GSM, mobile communications
Deshmukh PS et al. 2016 animal, rat/Fischer 344, whole body Hsp70 protein expression and DNA damage, learning and spatial memory 900 MHz 0.5835–0.6672 mW/kg 2 hours/day, 5 days/week for 90 days mobile communications, mobile phone, microwaves, low level microwaves, W-LAN/WiFi, RF field, CW continuous wave
Leszczynski D et al. 2002 intact cell/cell culture, EA.hy926 cells activation of signal transduction pathways and induction of cellular stress response (expression status of heat shock protein 27 and p38MAPK) 900 MHz 2 W/kg continuous for 1 h GSM, mobile communications, microwaves
Lim HB et al. 2005 blood samples activation of stress response genes 900 MHz 0.4–3.6 W/kg continuous for 4 hours GSM, mobile communications
Miyakoshi J et al. 2005 intact cell/cell culture, MO54 cells (derived from a human malignant glioma) activation of stress response genes 1,950 MHz 1–10 W/kg continuous for 1 or 2 h mobile communications
Huang TQ et al. 2008 intact cell/cell culture, HEI-OC1 cells (immortalized mouse auditory hair cells) cell cycle, DNA damage, stress response, and gene expression 1,763 MHz 20 W/kg continuous for 24 h and 48 h mobile communications, mobile phone, CDMA
Sanchez S et al. 2006 intact cell/cell culture, human reconstructed epidermis using human keratinocytes, normal human epidermal keratinocytes and normal human dermal fibroblasts cell stress response 900 MHz 2–16 W/kg continuous for 48 h GSM, mobile communications
Lee JS et al. 2006 intact cell/cell culture, Jurkat cells (T lymphocyte hybridoma cell line) and rat primary astrocytes cellular stress response 1,762.5 MHz 2–20 W/kg continuous for 30 min or 1 h digital mobile phone, CDMA, mobile communications
Hirose H et al. 2007 intact cell/cell culture, A172 (human glioblastoma cells) and IMR90 fibroblasts (from fetal lungs) cellular stress response (Hsp27 (heat-shock protein 27) content and hsp27 phosphorylation) 2.1425 GHz 80–800 mW/kg continuous for 2, 24, or 48 h for A172 cells mobile phone base station, CDMA, mobile communications, microwaves
Calabro E et al. 2012 intact cell/cell culture, SH-SY5Y (human neuroblastoma cell line) cellular stress response (heat shock protein expression, cell viability and apoptosis) 1,760 MHz 0.086 W/kg continuous for 2 h and 4 h mobile phone, GSM, mobile communications
Terro F et al. 2012 intact cell/cell culture, primary cerebral cortical cells (neurons and astrocytes) of rat embryos chaperone-mediated auto-phagocytosis, apoptosis 900 MHz 0.25 W/kg continuous for 24 h GSM, mobile communications, PW pulsed wave
Deshmukh PS et al. 2015 animal, rat/Fischer 344, whole body cognitive function, Hsp70 protein expression and DNA damage in the rat brain 900 MHz 0.5853–0.6672 mW/kg continuous for 2 h/day, 5 days/week for 180 days mobile communications, microwaves, 2.45 GHz
Valbonesi P et al. 2008 intact cell/cell culture, HTR-8/SVneo (human trophoblast cell line) comet assay, gene and protein expression 1,817 MHz 2 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Lixia S et al. 2006 intact cell/cell culture, SRA01/04-hLEC (human eye lens epithelial cells) comet assay, stress response/gene expression, cell proliferation 1.8 GHz 1–3 W/kg continuous for 2 h digital mobile phone, GSM, TDMA, mobile communications
Capri M et al. 2004 intact cell/cell culture, human peripheral blood mononuclear cells effects on human peripheral blood mononuclear cells (apoptosis, mitochondrial membrane potential; heat shock protein 70) 1,800 MHz 1.4–2 W/kg intermittent, 10 min on/20 min off, for 44 h GSM, mobile communications