Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1693 studies in total
  1. 735 studies
  2. 560 studies
  3. 509 studies
  4. 220 studies
  5. 203 studies
  6. 118 studies

DNA, proteins, and oxidative stress

560 studies in total
  1. 305 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies

Gene/protein expression (in general) 118 studies in total

Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Zhijian C et al. 2013 intact cell/cell culture, HMy2.CIR (human B-cell lymphoblastoid cells) protein expression 1.8 GHz 2 W/kg intermittent (5 min fields on/10 min fields off) for 24 hours mobile phone, GSM, mobile communications
Gerner C et al. 2010 intact cell/cell culture, Jurkat cells (human lymphoblastoid T cells), cultured fibroblasts, quiescent and inflammatory stimulated (by PHA and LPS) primary human white blood cells protein expression (effects on proteome) 1,800 MHz 2 W/kg 5 min on - 10 min off for 8 hr mobile communications, digital mobile phone, GSM, PW pulsed wave
Luo Q et al. 2013 human protein expression in chorionic villous tissue 900 MHz 1.46–8.8 W/kg continuous for 20 min. (according to "materials and methods" section) or 1 h (according to abstract)? mobile phone, GSM, mobile communications
Sepehrimanesh M et al. 2014 animal, rat/Sprague-Dawley, whole body protein expression in testes 900 MHz 0.19–1.22 W/g repeated daily exposure for 1 h on 30 consecutive days mobile phone, mobile communications
Fragopoulou AF et al. 2012 animal, mouse/BALB/c, whole body protein expression in the mouse brain 900 MHz 0.012–0.37 W/kg continuous for 3 h/day for 8 months mobile phone, digital mobile phone, GSM, mobile communications, PW pulsed wave, DECT, wireless transmitter
Li HW et al. 2007 intact cell/cell culture, human lens epithelial cells (HLEC) proteome changes: protein expression 1,800 MHz 1–3.5 W/kg continuous for 2 h digital mobile phone, GSM, mobile communications
Akhavan-Sigari R et al. 2014 human, partial body: head relationship between <i>p53</i> expression, <i>p53</i> mutations, survival time and cell phone usage 800–1,900 MHz 0.66–1.53 W/kg repeated daily exposure of less than 3 hours mobile phone, mobile communications
Goswami PC et al. 1999 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) stress response (proto-oncogene expression and DNA-binding activity of transcription factors) 835.62 MHz 0.6 W/kg continuous for 24 h or 4 days mobile communications, CDMA