Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1696 studies in total
  1. 738 studies
  2. 561 studies
  3. 511 studies
  4. 220 studies
  5. 204 studies
  6. 118 studies

DNA, proteins, and oxidative stress

561 studies in total
  1. 306 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Khalil AM et al. 2012 animal, rat/Sprague-Dawley, whole body DNA damage/oxidative stress (urinary level of 8-hydroxy-2-deoxyguanosine) 1,800 MHz - continuous for 2 h mobile phone, GSM, mobile communications
Vijayalaxmi et al. 2013 blood samples micronuclei formation 2,450 MHz 10.9 W/kg continuous for 2 h mobile phone, UMTS, W-CDMA, mobile communications, RF field, CW continuous wave, PW pulsed wave, 2.45 GHz, occupational, co-exposure
Atli Sekeroglu Z et al. 2013 animal, rat/Wistar albino, whole body DNA damage, cytotoxicity 900 MHz 0.37–0.76 W/kg continuous for 2 h/day for 45 days mobile phone, GSM, mobile communications, RF field, CW continuous wave
Deshmukh PS et al. 2015 animal, rat/Fischer 344, whole body cognitive function, Hsp70 protein expression and DNA damage in the rat brain 900 MHz 0.5853–0.6672 mW/kg continuous for 2 h/day, 5 days/week for 180 days mobile communications, microwaves, 2.45 GHz
Ziemann C et al. 2009 animal, mouse/B6C3F1/CrlBR, whole body formation of micronuclei 902 MHz 0.14–4 W/kg continuous for 2 h/day, 5 days/weeks for 2 years (see also add. information for exp. setup) mobile communications, digital mobile phone, GSM
Tkalec M et al. 2013 invertebrate, earthworm (<i>Eisenia fetida</i>), whole body genotoxicity, oxidative stress 900 MHz 0.13–9.33 mW/kg continuous for 2 hours mobile phone, mobile communications
Kesari KK et al. 2014 animal, rat/ Wistar, whole body DNA damage, protein expression, apoptosis and oxidative stress in brain 2,115 MHz 0.26–0.9 W/kg continuous for 2 hours/day for 60 days mobile phone, mobile communications
Kumar S et al. 2014 animal, rat/Wistar albino, whole body effects on testis and sperms 1,910.5 MHz 0.0226–1.34 W/kg continuous for 2 hours/day on 6 days/week for 60 days mobile phone, mobile communications
Sakuma N et al. 2006 intact cell/cell culture, A172 (human glioblastoma cells) and IMR90 fibroblasts (from fetal lungs) DNA damage 2.1425 GHz 80–800 mW/kg continuous for 2 or 24 hours UMTS, mobile communications
Li L et al. 2001 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) DNA damage 835.62 MHz 3.2–5.1 W/kg continuous for 2 or 4 h mobile communications, CDMA, FDMA
Hook GJ et al. 2004 intact cell/cell culture, Molt-4 T (lymphoblastoid cells) DNA damage/DNA single-strand breaks, apoptosis 813.56 MHz 2.4 mW/kg–3.2 W/kg continuous for 2, 3 or 21 h iDEN, CDMA, FDMA, TDMA, mobile communications
Malyapa RS et al. 1997 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) and U87MG (human glioblastoma cells) DNA damage (comet assay) 835.62 MHz 0.6 W/kg continuous for 2, 4 or 24 h mobile communications, CDMA, RF field, CW continuous wave
Sannino A et al. 2009 intact cell/cell culture DNA damage (micronucleus formation) 900 MHz 1.25–10 W/kg continuous for 20 h mobile phone, mobile communications, RF field
Sannino A et al. 2011 intact cell/cell culture DNA damage (micronucleus formation) 900 MHz 1.25–10 W/kg continuous for 20 h mobile phone, GSM, mobile communications, RF field
Zeni O et al. 2012 intact cell/cell culture micronucleus formation 1,950 MHz 0.15–1.25 W/kg continuous for 20 h digital mobile phone, UMTS, W-CDMA, mobile communications
Sannino A et al. 2014 intact cell/cell culture, human lymphocytes DNA damage (micronucleus formation) 1,950 MHz 0.3 W/kg continuous for 20 hours mobile phone, UMTS, mobile communications
Gurbuz N et al. 2010 animal, rat/Wistar albino, whole body micronucleus formation 1,800 MHz - continuous for 20 min./day, 5 days/week during 1 month mobile communications, digital mobile phone, GSM
Vijayalaxmi et al. 2001 human blood samples chromosomal aberration and micronuclei formation 835.62 MHz 4.4–5 W/kg continuous for 24 h mobile communications, FDMA, CW continuous wave
Vijayalaxmi et al. 2001 human blood samples formation of micronuclei and chromosomal aberration 847.74 MHz 4.9–5.5 W/kg continuous for 24 h mobile communications, CDMA
Scarfi MR et al. 2006 intact cell/cell culture DNA damage (micronucleus formation), cell cycle kinetic 900 MHz 1–10 W/kg continuous for 24 h GSM, mobile communications
Stronati L et al. 2006 blood samples chromosome aberrations, comet assay, formation of micronuclei, sister chromatid exchange 935 MHz 1–2 W/kg continuous for 24 h GSM, mobile communications, co-exposure
Schwarz C et al. 2008 intact cell/cell culture, ES-1, IH-9, HW-2 (human diploid fibroblasts) and lymphocytes formation of micronuclei 1,950 MHz 0.05–2 W/kg continuous for 24 h digital mobile phone, UMTS, mobile communications
Manti L et al. 2008 intact cell/cell culture chromosome aberrations 1.95 GHz 0.5–2 W/kg continuous for 24 h digital mobile phone, UMTS, CDMA, mobile communications
Bourthoumieu S et al. 2011 intact cell/cell culture, amniotic cells genomic instability (aneuploidy) 900 MHz 4–32 W/kg continuous for 24 h digital mobile phone, GSM, mobile communications, PW pulsed wave
Zeni O et al. 2012 intact cell/cell culture, PC-12 cells DNA damage, cell viability and apoptosis 1,950 MHz 10 W/kg continuous for 24 h UMTS, W-CDMA, mobile communications