研究のタイプ: 医学/生物学の研究 (experimental study)

[弱い商用周波磁界は上皮成長因子刺激に類似した作用として、ヒト羊膜細胞の上皮成長因子受容体感受性アクチン細胞骨格の運動性を急激に活性化させる] med./bio.

Weak Power Frequency Magnetic Field Acting Similarly to EGF Stimulation, Induces Acute Activations of the EGFR Sensitive Actin Cytoskeleton Motility in Human Amniotic Cells.

掲載誌: PLoS One 2014; 9 (2): e87626

この研究は、ヒト羊膜細胞(FL)の上皮成長因子受容体(EGFR)感受性アクチン細胞骨格運動性メカニズムに対する商用周波磁界(50 Hz、0.4 mT:ヘルムホルツコイルを使用、ばく露時間:30分間)の影響を調べた。この運動性のメカニズムを、Fアクチンの伸長による細胞膜の押出し(これにより細胞の端が伸びる。長いアクチン線維が押す糸状仮足と短く枝分かれしたアクチン線維が押す葉状仮足の形態がある)、情報伝達分子の濃度で評価した。その結果、細胞外からのEGF刺激なしの条件下で、磁界ばく露群では、押出し(特に糸状仮足と葉状仮足)の成長およびビンキュリン関連の細胞接着斑の増加が見られた;細胞表面積の増加およびアクチン集合効率の低下に対応して、ストレス線維の著しい低下も見られた;これらの影響は、タンパク量変化およびEGFR下流の運動性関連の情報伝達分子の分布変化を伴っていた、などを報告している。

The detailed summary of this article is not available in your language or incomplete. Would you like to see a complete translation of the summary? Then please contact us →

研究目的(著者による)

To investigate whether extremely low frequency magnetic fields have an effect, similar to that of epidermal growth factor, on cell motility including cytoskeletal structure transitions.

詳細情報

Cell motility is involved in many important physiological processes, e.g. nutrition and wound healing and relies on an actin cytoskeleton shifting. However, also for tumor cells the actin cytoskeleton plays a key role in migration during metastasis and in protection from immune surveillance. This study aimed to understand cell motility and aggressive behavior in a cytoskeletal manner as a response to environmental stimuli such as magnetic fields.
PD153035 is a competitive inhibitor of the epidermal growth factor receptor. It was partially added to the culture medium to test whether the potential influence of the magnetic field is mediated via epidermal growth factor receptor-related signal pathways. Additionally, epidermal growth factor was added to the culture medium in some experiments.

影響評価項目

ばく露

ばく露 パラメータ
ばく露1: 50 Hz
ばく露時間: continuous for 30 minutes

ばく露1

主たる特性
周波数 50 Hz
タイプ
  • magnetic field
ばく露時間 continuous for 30 minutes
ばく露装置
ばく露の発生源/構造
ばく露装置の詳細 a pair of circular horizontal Helmholtz coil plates (20 cm in height, and 20 cm in radius, each plate consists of 150 turns of copper wire); coils were placed in a CO2 culture incubator at 37°C and shielded from external field interactions; cells and samples were placed between the plates
Sham exposure A sham exposure was conducted.
パラメータ
測定量 種別 Method Mass 備考
磁束密度 0.4 mT - 測定値および計算値 - ± 0.012 mT

Reference articles

  • Jia C et al. (2007): [EGF受容体クラスタリングは0.4 mT電力周波数磁界によって誘発され、EGF受容体チロシンキナーゼ阻害剤PD153035によって阻害される]

ばく露を受けた生物:

方法 影響評価項目/測定パラメータ/方法

研究対象とした生物試料:
調査の時期:
  • ばく露後

研究の主なアウトカム(著者による)

The magnetic field exposure led to morphological changes of the cells such as new portrusions (especially filopodia and lamellipodia) in comparison to the sham exposed cells. Additionally, in exposed cells an increased population of vinculin-associated focal adhesions was found compared to the sham exposed cells. Furthermore, exposure led to an obvious reduction in the content of stress fibers in the cell centers, while larger cell surface areas and decreased efficiency of actin assembly was found in the cells, which was associated with a decrease in overall F-actin content and distributions. These effects were also associated with changes in the protein expression levels or distribution patterns of the epidermal growth factor receptor downstream motility-related signaling molecules. The effects induced by the magnetic field were similar to those provoked by adding the epidermal growth factor to the culture medium. However, blocking of the epidermal growth factor receptor activation with PD153035 did not completely prevent all magnetic field induced effects, indicating that PD153035-sensitive epidermal growth factor receptor is not the sole contributor to magnetic field-induced cytoskeletal reorganization.
The authors suggest that extremely low frequency magnetic fields influence the migration- and motility-related actin cytoskeleton reorganization and that the occurring alterations are mediated via an epidermal growth factor receptor-related signal pathway.

研究の種別:

研究助成

関連論文