研究のタイプ: 医学/生物学の研究 (experimental study)

[無線周波電磁界パルスによる脳の刺激は睡眠依存的な遂行能力改善に影響する] med./bio.

Stimulation of the brain with radiofrequency electromagnetic field pulses affects sleep-dependent performance improvement.

掲載誌: Brain Stimul 2013; 6 (5): 805-811

The detailed summary of this article is not available in your language or incomplete. Would you like to see a complete translation of the summary? Then please contact us →

研究目的(著者による)

To study possible mechanisms how radiofrequency electromagnetic fields affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes.

詳細情報

Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (0.75-4.5 Hz). In previous studies (see "related articles"), pulse modulated radiofrequency electromagnetic fields (900 MHz) were capable to modulate these EEG characteristics of sleep. A sleep spindle is a burst of oscillatory brain activity visible on an EEG that occurs during sleep stage 2. It consists of 12-14 Hz waves that occur for at least 0.5 seconds.
16 male subjects (18-21 years) underwent two experimental nights (one exposure night, one control night).

影響評価項目

ばく露

ばく露 パラメータ
ばく露1: 900 MHz
Modulation type: pulsed
ばく露時間: intermittent during 8 h (during the sleep; exposure of 5 min "Intermittent-1" was followed by 1 min with no exposure (OFF phase), then 5 min "Intermittent-2" was followed by a 7 min OFF phase; this 18 min sequence was repeated throughout the whole night
  • SAR: 0.15 W/kg spatial average (10 g) (peak spatial SAR during the whole night)
  • SAR: 10 W/kg spatial average (10 g) (peak spatial SAR during the 7.1 ms pulses)
  • SAR: 1 W/kg (500 ms burst average)
  • SAR: 0.125 W/kg ("Intermittent-1" average)
  • SAR: 0.4 W/kg ("Intermittent-2" average)

ばく露1

主たる特性
周波数 900 MHz
タイプ
  • electromagnetic field
ばく露時間 intermittent during 8 h (during the sleep; exposure of 5 min "Intermittent-1" was followed by 1 min with no exposure (OFF phase), then 5 min "Intermittent-2" was followed by a 7 min OFF phase; this 18 min sequence was repeated throughout the whole night
Modulation
Modulation type pulsed
Pulse width 7.1 ms
Additional information

7 consecutive 7.1 ms pulses forming one 500 ms burst; these 500 ms bursts were repeated every 4 s ("Intermittent-1" phase, 0.25 Hz, corresponding approximately to occurrence of sleep spindles), and every 1.25 s ("Intermittent-2" phase, 0.8 Hz, corresponding approximately to frequency of slow oscillations), respectively.

ばく露装置
ばく露の発生源/構造
  • circular-polarized antenna
Distance between exposed object and exposure source 415 mm
ばく露装置の詳細 circular-polarized antenna mounted on the wall at a height of 490 mm above the matress and facing down toward the volunteer's forehead
Sham exposure A sham exposure was conducted.
パラメータ
測定量 種別 Method Mass 備考
SAR 0.15 W/kg spatial average - 10 g peak spatial SAR during the whole night
SAR 10 W/kg spatial average - 10 g peak spatial SAR during the 7.1 ms pulses
SAR 1 W/kg - - - 500 ms burst average
SAR 0.125 W/kg - - - "Intermittent-1" average
SAR 0.4 W/kg - - - "Intermittent-2" average

Reference articles

  • Christ A et al. (2010): [ヴァーチャル・ファミリー:ドシメトリ・シミュレーションのための2種類の成人モデルと2種類の子供モデル体表面ベースの解剖学的モデル]

ばく露を受けた生物:

方法 影響評価項目/測定パラメータ/方法

研究対象とした生物試料:
研究対象とした臓器系:
調査の時期:
  • ばく露前
  • ばく露中
  • ばく露後

研究の主なアウトカム(著者による)

Good sleep quality was obtained in all subjects under both conditions (exposure and sham exposure). After pulsed radiofrequency electromagnetic field exposure an increased slow wave activity during exposure compared to sham exposure was found toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased electromagnetic field burst-related response in the slow wave activity range, indicated by an increase in event-related EEG spectral power (ERD/ERS) and phase changes (ITC) in the slow wave activity range.
Under exposure, sleep-dependent performance improvement in the motor task was reduced compared to the sham exposure condition .
The study showed that a radiofrequency electromagnetic field exposure may directly affect ongoing brain activity during sleep, and as a consequence alter sleep-dependent performance improvement.

研究の種別:

研究助成

関連論文