Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1696 studies in total
  1. 738 studies
  2. 561 studies
  3. 511 studies
  4. 220 studies
  5. 204 studies
  6. 118 studies

DNA, proteins, and oxidative stress

561 studies in total
  1. 306 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Hou Q et al. 2015 intact cell/cell culture, NIH3T3 cells (mouse fibroblast cell line) oxidative stress, DNA damage and apoptosis in mouse embryonic fibroblasts 1,800 MHz 2 W/kg intermittent exposure (5 min on/10 min off) for 0.5, 1, 1.5, 2, 4, 6 or 8 hours mobile phone, GSM, mobile communications
Suzuki S et al. 2017 intact cell/cell culture, sperm cells and oocytes derived from mice (B6D2F1) fertilization and embryogenesis; chromosome damage 1,950 MHz 2 W/kg 60 minutes mobile communications, mobile phone, W-CDMA
Mashevich M et al. 2003 intact cell/cell culture loss and gain of chromosome 17; aneuploidy 830 MHz 2–8.2 W/kg continuous for 72 h mobile communications, mobile phone
Kumar G et al. 2015 isolated organ, rat bones (femur and tibia) - 900 MHz 2–12.4 W/kg - mobile phone, mobile communications, RF field, CW continuous wave, PW pulsed wave
Perrin A et al. 2010 intact cell/cell culture, THP-1 cells (human monocytic leukemia cell line) DNA damage (comet assay and gamma-H2AX assay) 1,800 MHz 2–16 W/kg continuous for 2 h digital mobile phone, GSM, mobile communications, RF field, PW pulsed wave, co-exposure
Zeni O et al. 2008 intact cell/cell culture formation of micronucleus during different cell cycle stages 1,950 MHz 2.2 W/kg intermittent, 6 min on/2 h off, for 24, 44, or 24 + 44 h digital mobile phone, UMTS, mobile communications
d'Ambrosio G et al. 2002 intact cell/cell culture chromosome damage, cell proliferation 1.748 GHz 2.25–5.02 W/kg continuous for 15 min GSM, mobile communications, microwaves
Baohong W et al. 2005 intact cell/cell culture DNA damage 1.8 GHz 3 W/kg continuous for 2 h GSM, mobile communications, microwaves
Baohong W et al. 2007 intact cell/cell culture comet assay 1.8 GHz 3 W/kg continuous for 1.5 h or 4 h digital mobile phone, GSM, mobile communications, microwaves
Xu S et al. 2013 intact cell/cell culture, CHL (Chinese hamster lung) cells, human umbilical vein endothelial cells (HUVEC), primary newborn rat astrocytes, human amniotic epithelial cells, human lens epithelial cells (HLEC), human skin fibroblasts DNA damage, DNA double strand breaks 1,800 MHz 3 W/kg intermittent for 1 h or 24 h (5 min "on", 10 min "off") mobile phone, GSM, mobile communications
Li L et al. 2001 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) DNA damage 835.62 MHz 3.2–5.1 W/kg continuous for 2 or 4 h mobile communications, CDMA, FDMA
Bisht KS et al. 2002 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) formation of micronuclei 835.62 MHz 3.2–5.1 W/kg continuous for 3, 8,16, or 24 h CDMA, FDMA, mobile communications
Sykes PJ et al. 2001 animal, mouse/pKZ1(transgenic, with beta-galactosidase gene (<i>lacZ</i>)), whole body intrachromosomal recombination, inversion frequency 900 MHz 4 W/kg repeated daily exposure for 30 min/day for 1, 5 or 25 days (5 days/week) GSM, mobile communications, PW pulsed wave
Chang SK et al. 2005 bacterium, <i>Escherichia coli</i>/WP2uvrA; <i>Salmonella typhimurium</i>/TA 98, TA 100, TA 102, TA 1535 and TA 1537 occurrency of revertants, DNA stability 835 MHz 4 W/kg continuous for 48 h mobile communications, mobile phone, CDMA
Bourthoumieu S et al. 2011 intact cell/cell culture, amniotic cells genomic instability (aneuploidy) 900 MHz 4–32 W/kg continuous for 24 h digital mobile phone, GSM, mobile communications, PW pulsed wave
Vijayalaxmi et al. 2001 human blood samples chromosomal aberration and micronuclei formation 835.62 MHz 4.4–5 W/kg continuous for 24 h mobile communications, FDMA, CW continuous wave
Vijayalaxmi et al. 2001 human blood samples formation of micronuclei and chromosomal aberration 847.74 MHz 4.9–5.5 W/kg continuous for 24 h mobile communications, CDMA
Luukkonen J et al. 2009 intact cell/cell culture, SH-SY5Y (human neuroblastoma cell line) DNA damage, production of reactive oxygen species 872 MHz 5 W/kg continuous for 1 h GSM, mobile communications, RF field, CW continuous wave, co-exposure
Luukkonen J et al. 2010 intact cell/cell culture, SH-SY5Y (human neuroblastoma cell line) DNA damage, reactive oxygen species production 872 MHz 5 W/kg continuous for 1 h for the ROS production experiment; continuous for 3 hr for the comet assay experiment mobile phone, GSM, mobile communications, RF field, CW continuous wave, PW pulsed wave
Maes A et al. 2000 blood samples chromosome aberrations and sister chromatid exchan 455.7 MHz 6.5 W/kg continuous for 2 h analog mobile phone, mobile communications, microwaves
Zeni O et al. 2012 intact cell/cell culture, PC-12 cells DNA damage, cell viability and apoptosis 1,950 MHz 10 W/kg continuous for 24 h UMTS, W-CDMA, mobile communications
Vijayalaxmi et al. 2013 blood samples micronuclei formation 2,450 MHz 10.9 W/kg continuous for 2 h mobile phone, UMTS, W-CDMA, mobile communications, RF field, CW continuous wave, PW pulsed wave, 2.45 GHz, occupational, co-exposure
Huang TQ et al. 2008 intact cell/cell culture, HEI-OC1 cells (immortalized mouse auditory hair cells) cell cycle, DNA damage, stress response, and gene expression 1,763 MHz 20 W/kg continuous for 24 h and 48 h mobile communications, mobile phone, CDMA