Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1697 studies in total
  1. 738 studies
  2. 562 studies
  3. 511 studies
  4. 221 studies
  5. 204 studies
  6. 118 studies

DNA, proteins, and oxidative stress

562 studies in total
  1. 306 studies
  2. 198 studies
  3. 119 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Smith-Roe SL et al. 2020 animal, mouse/B6C3F1/N, rat/Sprague-Dawley - 900–1,900 MHz - - mobile communications, GSM, CDMA, mobile phone
Souza LCM et al. 2014 human, partial body nuclear abnormalities 850–1,900 MHz 0.344–1.38 W/kg > 5 hours mobile phone use per week mobile phone, mobile communications
Speit G et al. 2007 intact cell/cell culture, ES-1 (human diploid fibroblasts) and V79 (Chinese hamster fibroblast cells) comet assay and formation of micronuclei 1,800 MHz 1–2 W/kg intermittent, 5 min on/10 min off, for 1, 4, 18, and 24 h digital mobile phone, GSM, mobile communications
Speit G et al. 2013 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells) comet assay and formation of micronuclei 1,800 MHz 1.3–10 W/kg intermittent, 5 min on/10 min off for 24 h mobile phone, mobile communications
Stronati L et al. 2006 blood samples chromosome aberrations, comet assay, formation of micronuclei, sister chromatid exchange 935 MHz 1–2 W/kg continuous for 24 h GSM, mobile communications, co-exposure
Su L et al. 2017 intact cell/cell culture, U251 and A127 (human glioblastoma cell lines) and SH-SY5Y (human neuroblastoma cell line) - 1,800 MHz - - mobile communications, GSM, PW pulsed wave
Sun C et al. 2016 - - 1,800 MHz - - mobile phone, GSM, mobile communications
Sun C et al. 2023 intact cell/cell culture, immortalized mouse embryonic fibroblasts - 1,800 MHz - - mobile communications, mobile phone, RF field, co-exposure, also other exposures without EMF
Sun Y et al. 2017 intact cell/cell culture, HL-60 (human acute myeloid leukaemia cells) - 900 MHz - - mobile communications, RF field, wireless transmitter
Suzuki S et al. 2017 intact cell/cell culture, sperm cells and oocytes derived from mice (B6D2F1) fertilization and embryogenesis; chromosome damage 1,950 MHz 2 W/kg 60 minutes mobile communications, mobile phone, W-CDMA
Sykes PJ et al. 2001 animal, mouse/pKZ1(transgenic, with beta-galactosidase gene (<i>lacZ</i>)), whole body intrachromosomal recombination, inversion frequency 900 MHz 4 W/kg repeated daily exposure for 30 min/day for 1, 5 or 25 days (5 days/week) GSM, mobile communications, PW pulsed wave
Syldona M 2007 DNA/RNA DNA conformation - - 5 min mobile communications, mobile phone
Takahashi S et al. 2002 animal, mouse/Big Blue (BBM, transgenic for the <i>lac</i>I marker gene in lambda phage; C57BL/6 background), partial body: head mutation frequency 1.5 GHz 0.27–2 W/kg repeated daily exposure, 90 min/day, 5 days/week for 2 or 4 weeks PDC, TDMA, mobile communications
Tice RR et al. 2002 intact cell/cell culture DNA and chromosomal damage 837 MHz 1–10 W/kg continuous for 3 or 24 h GSM, CDMA, TDMA, mobile communications
Tiwari R et al. 2008 blood samples DNA damage 835 MHz 1.17 W/kg continuous for 1 h and 2 h mobile communications, mobile phone, digital mobile phone, CDMA
Tkalec M et al. 2013 invertebrate, earthworm (<i>Eisenia fetida</i>), whole body genotoxicity, oxidative stress 900 MHz 0.13–9.33 mW/kg continuous for 2 hours mobile phone, mobile communications
Trosic I et al. 2011 animal, rat/Wistar, whole body DNA damage 915 MHz - 1 hour/day, 7 days/week for 2 weeks mobile phone, GSM, mobile communications
Valbonesi P et al. 2008 intact cell/cell culture, HTR-8/SVneo (human trophoblast cell line) comet assay, gene and protein expression 1,817 MHz 2 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Vanishree M et al. 2018 human - - - - mobile communications, mobile phone
Verschaeve L et al. 2006 animal, rat/Wistar, whole body DNA damage 900 MHz 0.3–0.9 W/kg repeated daily exposure, 2 h/day, 5 days/week, for 24 months digital mobile phone, GSM, mobile communications
Vijayalaxmi et al. 2001 human blood samples chromosomal aberration and micronuclei formation 835.62 MHz 4.4–5 W/kg continuous for 24 h mobile communications, FDMA, CW continuous wave
Vijayalaxmi et al. 2001 human blood samples formation of micronuclei and chromosomal aberration 847.74 MHz 4.9–5.5 W/kg continuous for 24 h mobile communications, CDMA
Vijayalaxmi et al. 2003 animal, rat/Fischer 344, whole body, partial body: head formation of micronuclei 1.6 GHz 0.077–1.6 W/kg 2 h/day, 7 days/week,starting on day 19 of gestation and lasting until the offspring reached an age of 3 weeks IRIDIUM, mobile communications
Vijayalaxmi et al. 2013 blood samples micronuclei formation 2,450 MHz 10.9 W/kg continuous for 2 h mobile phone, UMTS, W-CDMA, mobile communications, RF field, CW continuous wave, PW pulsed wave, 2.45 GHz, occupational, co-exposure
Vilic M et al. 2017 invertebrate, honey bee (<i>Apis mellifera</i>), whole body - 900 MHz - - mobile communications, AM amplitude modulation
Waldmann P et al. 2013 intact cell/cell culture, human peripheral blood lymphocytes DNA damage 1,800 MHz 0.2–10 W/kg intermittent (5 min on, 10 min off) for 28 hours digital mobile phone, GSM, mobile communications
Wang X et al. 2015 intact cell/cell culture, Neuro-2a (mouse neuroblastoma) cells DNA damage, oxidative stress and cell viability 900 MHz 0.5–2 W/kg continuous for 24 hours mobile phone, GSM, mobile communications, co-exposure
Xu S et al. 2010 intact cell/cell culture oxidative DNA damage 1,800 MHz 2 W/kg 5 min on - 10 min off - for 24 hr mobile phone, GSM, mobile communications, RF field, PW pulsed wave
Xu S et al. 2013 intact cell/cell culture, CHL (Chinese hamster lung) cells, human umbilical vein endothelial cells (HUVEC), primary newborn rat astrocytes, human amniotic epithelial cells, human lens epithelial cells (HLEC), human skin fibroblasts DNA damage, DNA double strand breaks 1,800 MHz 3 W/kg intermittent for 1 h or 24 h (5 min "on", 10 min "off") mobile phone, GSM, mobile communications
Yadav AS et al. 2008 human nuclear anomalies - - - mobile communications, mobile phone, not extractable
Yakymenko I et al. 2018 animal, Japanese quail eggs - 1,800 MHz - - mobile phone, mobile communications
Yang H et al. 2020 intact cell/cell culture, rat stria marginal cells - 1,800 MHz - - mobile phone, mobile communications, RF field
Yao K et al. 2008 intact cell/cell culture, SRA01/04-hLEC (human eye lens epithelial cells) DNA damage, intracellular reactive oxygen species formation 30–90 Hz 1–4 W/kg intermittent, 5 min on/10 min off, for 2 h digital mobile phone, GSM, mobile communications, microwaves
Yildirim MS et al. 2010 human, whole body micronucleus formation and chromosome aberrations in lymphocytes - - - mobile phone base station, mobile communications, low level microwaves, not extractable
Zahedifar Z et al. 2013 animal, mouse/BALB/c - 940 MHz - - mobile communications, mobile phone, microwaves, co-exposure
Zeni O et al. 2003 intact cell/cell culture incidence of micronuclei, cell cycle kinetics 900 MHz 0.2–1.6 W/kg intermittent; 6 min on/3 h off, 14 on/off cycles of exposure, altogether 44 h GSM, mobile communications
Zeni O et al. 2005 intact cell/cell culture, human peripheral blood leukocytes occurence of DNA damages 900 MHz 0.3–1 W/kg continuous for 2 h GSM, mobile communications, microwaves
Zeni O et al. 2008 intact cell/cell culture formation of micronucleus during different cell cycle stages 1,950 MHz 2.2 W/kg intermittent, 6 min on/2 h off, for 24, 44, or 24 + 44 h digital mobile phone, UMTS, mobile communications
Zeni O et al. 2012 intact cell/cell culture, PC-12 cells DNA damage, cell viability and apoptosis 1,950 MHz 10 W/kg continuous for 24 h UMTS, W-CDMA, mobile communications
Zeni O et al. 2012 intact cell/cell culture micronucleus formation 1,950 MHz 0.15–1.25 W/kg continuous for 20 h digital mobile phone, UMTS, W-CDMA, mobile communications
Zhijian C et al. 2009 intact cell/cell culture DNA damage and DNA repair 1.8 GHz 2 W/kg 5 min on - 10 min off, for 24 hr GSM, mobile communications, RF field, co-exposure
Zhijian C et al. 2010 intact cell/cell culture, HMy2.CIR (human B-cell lymphoblastoid cells) DNA damage and DNA repair 1.8 GHz 2 W/kg continuous for up to 28 h GSM, mobile communications, RF field, PW pulsed wave
Ziemann C et al. 2009 animal, mouse/B6C3F1/CrlBR, whole body formation of micronuclei 902 MHz 0.14–4 W/kg continuous for 2 h/day, 5 days/weeks for 2 years (see also add. information for exp. setup) mobile communications, digital mobile phone, GSM
Zong C et al. 2015 animal, mouse/ICR, whole body DNA damage in leukocytes, oxidative stress and antioxidative status in plasma, liver and lung 900 MHz 50 mW/kg continuous for 4 h/day for 7 days mobile communications, RF field, CW continuous wave, co-exposure
Zuo WQ et al. 2015 intact cell/cell culture, spiral ganglion neurons of rat - 1,800 MHz - - mobile phone, GSM, mobile communications
d'Ambrosio G et al. 2002 intact cell/cell culture chromosome damage, cell proliferation 1.748 GHz 2.25–5.02 W/kg continuous for 15 min GSM, mobile communications, microwaves
de Oliveira FM et al. 2017 human - - - - mobile communications, mobile phone
de Oliveira FM et al. 2017 human - - - - mobile communications, mobile phone