pair of Helmholtz coils with a diameter of 25 cm and 225 turns of insulated soft copper wire with a diameter of 1 mm; placed horizontally in a 130 cm x 65 cm x 80 cm Faraday cage; coils facing each other with a distance of 25 cm between them
Celik MS et al.
(2012):
The effects of long-term exposure to extremely low-frequency magnetic fields on bone formation in ovariectomized rats.
Ulku SZ et al.
(2012):
Can histological and histomorphometrical changes be induced in rat mandibular condyle following ovariectomy and long-term extremely low frequency magnetic field exposure?
Barnaba SA et al.
(2012):
Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures.
Ulku R et al.
(2011):
Extremely low-frequency magnetic field decreased calcium, zinc and magnesium levels in costa of rat.
Jing D et al.
(2011):
The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats.
Kargul B et al.
(2011):
Effect of extremely low frequency magnetic field on enamel microhardness in rats.
Lin HY et al.
(2010):
Repairing large bone fractures with low frequency electromagnetic fields.
Gurgul S et al.
(2008):
Deterioration of bone quality by long-term magnetic field with extremely low frequency in rats.
Okudan B et al.
(2006):
DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields.
Zhang XY et al.
(2006):
Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones.
Hannay G et al.
(2005):
Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development.
Chang K et al.
(2003):
Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells.
Diniz P et al.
(2002):
Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts.
Sert C et al.
(2002):
The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats.
Lee JH et al.
(2000):
Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields.
Grace KL et al.
(1998):
The effects of pulsed electromagnetism on fresh fracture healing: osteochondral repair in the rat femoral groove.
Tabrah FL et al.
(1998):
Clinical report on long-term bone density after short-term EMF application.
Heermeier K et al.
(1998):
Effects of extremely low frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells.
Bassett CA et al.
(1974):
Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method.
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.