Study overviews

Mobile phone related articles are

Please note that a publication can be assigned to several endpoints, i.e. the sum of publications from the individual thematic points and subpoints can be greater than the total sum of actual publications.

Experimental studies on mobile communications

1696 studies in total
  1. 738 studies
  2. 561 studies
  3. 511 studies
  4. 220 studies
  5. 204 studies
  6. 118 studies

DNA, proteins, and oxidative stress

561 studies in total
  1. 306 studies
  2. 198 studies
  3. 118 studies
  4. 42 studies
Authors Year Exposed system Endpoints Frequency range SAR Exposure duration Parameters
Valbonesi P et al. 2008 intact cell/cell culture, HTR-8/SVneo (human trophoblast cell line) comet assay, gene and protein expression 1,817 MHz 2 W/kg continuous for 1 h digital mobile phone, GSM, mobile communications
Lixia S et al. 2006 intact cell/cell culture, SRA01/04-hLEC (human eye lens epithelial cells) comet assay, stress response/gene expression, cell proliferation 1.8 GHz 1–3 W/kg continuous for 2 h digital mobile phone, GSM, TDMA, mobile communications
Nikolova T et al. 2005 intact cell/cell culture, ES R1 cells (mouse embryonic stem cells) different effects (e.g. different transcript levels, genotoxicity, proliferation, apoptosis, cytotoxicity, mitochondrial function) 50 Hz–1.25 kHz 1.5 W/kg intermittent, 5 min on/30 min off, for 6 h and 48 h GSM, mobile communications, 50/60 Hz, power transmission line
Hansen V et al. 1996 DNA/RNA, bacterium, virus/bacteriophages, <i>Escherichia coli</i>/WP2, WP2uvrA, W575 effects on biological material (enzyme activity, survival of bacteriophages, and DNA damage) 900 MHz 11.75–87 mW/kg continuous for about 100 days or about 30 days GSM, mobile communications
Kumar S et al. 2014 animal, rat/Wistar albino, whole body effects on testis and sperms 1,910.5 MHz 0.0226–1.34 W/kg continuous for 2 hours/day on 6 days/week for 60 days mobile phone, mobile communications
Guler G et al. 2012 animal, rabbit/New Zealand, whole body effects on the liver of young rabbits (DNA damage and lipid peroxidation) 1,800 MHz 1.8 W/kg continuous for 15 min/day on 7 days (female) or 14 days (male) digital mobile phone, GSM, mobile communications, PW pulsed wave
Suzuki S et al. 2017 intact cell/cell culture, sperm cells and oocytes derived from mice (B6D2F1) fertilization and embryogenesis; chromosome damage 1,950 MHz 2 W/kg 60 minutes mobile communications, mobile phone, W-CDMA
Bisht KS et al. 2002 intact cell/cell culture, C3H 10T1/2 cells (derived from mouse embryo fibroblasts) formation of micronuclei 835.62 MHz 3.2–5.1 W/kg continuous for 3, 8,16, or 24 h CDMA, FDMA, mobile communications
Vijayalaxmi et al. 2003 animal, rat/Fischer 344, whole body, partial body: head formation of micronuclei 1.6 GHz 0.077–1.6 W/kg 2 h/day, 7 days/week,starting on day 19 of gestation and lasting until the offspring reached an age of 3 weeks IRIDIUM, mobile communications
Juutilainen J et al. 2007 animal, mouse/CBA/S and transgenic of the line K2 (over-expressing the human ODC gene) and non-transgenic littermate, whole body formation of micronuclei 849 MHz 0.35–1.5 W/kg repeated daily exposure, 1.5 h/day, 5 days/week, for 78 weeks analog mobile phone, digital mobile phone, GSM, NMT, D-AMPS, mobile communications
Schwarz C et al. 2008 intact cell/cell culture, ES-1, IH-9, HW-2 (human diploid fibroblasts) and lymphocytes formation of micronuclei 1,950 MHz 0.05–2 W/kg continuous for 24 h digital mobile phone, UMTS, mobile communications
Ziemann C et al. 2009 animal, mouse/B6C3F1/CrlBR, whole body formation of micronuclei 902 MHz 0.14–4 W/kg continuous for 2 h/day, 5 days/weeks for 2 years (see also add. information for exp. setup) mobile communications, digital mobile phone, GSM
Vijayalaxmi et al. 2001 human blood samples formation of micronuclei and chromosomal aberration 847.74 MHz 4.9–5.5 W/kg continuous for 24 h mobile communications, CDMA
Zeni O et al. 2008 intact cell/cell culture formation of micronucleus during different cell cycle stages 1,950 MHz 2.2 W/kg intermittent, 6 min on/2 h off, for 24, 44, or 24 + 44 h digital mobile phone, UMTS, mobile communications
Hintzsche H et al. 2010 human frequency of micronuclei - - up to 15 hr/week for up to 10 years and more mobile phone, mobile communications, microwaves, not extractable
Antonopoulos A et al. 1998 intact cell/cell culture frequency of sister-chromatid exchange, velocity of cell cycle 380 MHz 82.9–1,700 mW/kg continuous for 48, 52, 56, 64, and 68 h mobile communications, GSM
Hintzsche H et al. 2012 intact cell/cell culture, HaCaT cells (human keratinocytes) and human-hamster hybrid (A<sub>L</sub>) cells genomic damage and mitotic disturbances 900 MHz - continuous for 30 min (both cell types) or 22 h (A<sub>L</sub> cells only) digital mobile phone, GSM, mobile communications, microwaves, CW continuous wave, PW pulsed wave
Bourthoumieu S et al. 2011 intact cell/cell culture, amniotic cells genomic instability (aneuploidy) 900 MHz 4–32 W/kg continuous for 24 h digital mobile phone, GSM, mobile communications, PW pulsed wave
Belyaev IY et al. 2009 intact cell/cell culture genotoxic effects and stress response 905–915 MHz 37–40 mW/kg 1 h mobile communications, digital mobile phone, GSM, UMTS
Banerjee S et al. 2016 human, partial body: head genotoxicity in oral mucosa - - mobile use for less than 5 years and less than 3 hours a week mobile phone, GSM, CDMA, mobile communications
Tkalec M et al. 2013 invertebrate, earthworm (<i>Eisenia fetida</i>), whole body genotoxicity, oxidative stress 900 MHz 0.13–9.33 mW/kg continuous for 2 hours mobile phone, mobile communications
Zeni O et al. 2003 intact cell/cell culture incidence of micronuclei, cell cycle kinetics 900 MHz 0.2–1.6 W/kg intermittent; 6 min on/3 h off, 14 on/off cycles of exposure, altogether 44 h GSM, mobile communications
Gorlitz BD et al. 2005 animal, mouse/B6C3F1, whole body induction of micronuclei 902–1,747 MHz 0.33–33.2 mW/g repeated daily exposure, 2 h/day, for 5 days GSM, mobile communications
Sykes PJ et al. 2001 animal, mouse/pKZ1(transgenic, with beta-galactosidase gene (<i>lacZ</i>)), whole body intrachromosomal recombination, inversion frequency 900 MHz 4 W/kg repeated daily exposure for 30 min/day for 1, 5 or 25 days (5 days/week) GSM, mobile communications, PW pulsed wave
Güler G et al. 2010 animal, rabbit/New Zealand White, whole body lipid peroxidation and DNA damage in the brain 1,800 MHz - continuous for 15 min/day on 7 days - from day 15 to day 22 of gestation mobile phone, GSM, mobile communications
Mashevich M et al. 2003 intact cell/cell culture loss and gain of chromosome 17; aneuploidy 830 MHz 2–8.2 W/kg continuous for 72 h mobile communications, mobile phone
Vijayalaxmi et al. 2013 blood samples micronuclei formation 2,450 MHz 10.9 W/kg continuous for 2 h mobile phone, UMTS, W-CDMA, mobile communications, RF field, CW continuous wave, PW pulsed wave, 2.45 GHz, occupational, co-exposure
Gustavino B et al. 2016 plant, broad bean (<i>Vicia faba</i> L.) (seedlings), whole body micronuclei in secondary root tips 915 MHz 0.4–1.6 W/kg continuous for 72 hours mobile phone, mobile communications, CW continuous wave
Gurbuz N et al. 2010 animal, rat/Wistar albino, whole body micronucleus formation 1,800 MHz - continuous for 20 min./day, 5 days/week during 1 month mobile communications, digital mobile phone, GSM
Zeni O et al. 2012 intact cell/cell culture micronucleus formation 1,950 MHz 0.15–1.25 W/kg continuous for 20 h digital mobile phone, UMTS, W-CDMA, mobile communications
Yildirim MS et al. 2010 human, whole body micronucleus formation and chromosome aberrations in lymphocytes - - - mobile phone base station, mobile communications, low level microwaves, not extractable
Gurbuz N et al. 2014 animal, rat/Wistar albino, whole body micronucleus formation in exfoliated bladder cells 1,800 MHz 0.23 W/kg continuous for 30 minutes/day, 6 days/week for 1 or 2 months GSM, mobile communications
Gos P et al. 2000 yeast, <i>Saccharomyces cerevisiae</i>/RS112<sup>a</sup>, RSY6 S35/2-10C, WDHY907<sup>b</sup> (ARG+ revertant; <i>CAN1</i> encodes the arginine permease), FY3<sup>c</sup> mutagenesis and genomic stability (mutation rate and deletions) 900 MHz 0.13–1.3 W/kg continuous for 1 h GSM, mobile communications, PW pulsed wave
Takahashi S et al. 2002 animal, mouse/Big Blue (BBM, transgenic for the <i>lac</i>I marker gene in lambda phage; C57BL/6 background), partial body: head mutation frequency 1.5 GHz 0.27–2 W/kg repeated daily exposure, 90 min/day, 5 days/week for 2 or 4 weeks PDC, TDMA, mobile communications
Esmekaya MA et al. 2011 intact cell/cell culture, human peripheral blood lymphocytes mutation rate, cell viability and cell morphology of human peripheral blood lymphocytes 1.8 GHz 0.21 W/kg continuous for 6, 8, 12 and 48 h digital mobile phone, GSM, mobile communications, microwaves, PW pulsed wave, co-exposure
Eberle P et al. 1996 intact cell/cell culture mutations in genes and chromosomes, cell proliferation 440 MHz - continuous for 70, 50, or 39 h mobile communications, GSM, C-Net
Souza LCM et al. 2014 human, partial body nuclear abnormalities 850–1,900 MHz 0.344–1.38 W/kg > 5 hours mobile phone use per week mobile phone, mobile communications
Yadav AS et al. 2008 human nuclear anomalies - - - mobile communications, mobile phone, not extractable
Zeni O et al. 2005 intact cell/cell culture, human peripheral blood leukocytes occurence of DNA damages 900 MHz 0.3–1 W/kg continuous for 2 h GSM, mobile communications, microwaves
Chang SK et al. 2005 bacterium, <i>Escherichia coli</i>/WP2uvrA; <i>Salmonella typhimurium</i>/TA 98, TA 100, TA 102, TA 1535 and TA 1537 occurrency of revertants, DNA stability 835 MHz 4 W/kg continuous for 48 h mobile communications, mobile phone, CDMA
Xu S et al. 2010 intact cell/cell culture oxidative DNA damage 1,800 MHz 2 W/kg 5 min on - 10 min off - for 24 hr mobile phone, GSM, mobile communications, RF field, PW pulsed wave
Sahin D et al. 2016 animal, rat/Wistar albino, whole body oxidative DNA damage in the brain 2,100 MHz 0.4 W/kg 6 h/day on 5 consecutive days/week for 2 weeks mobile phone, UMTS, mobile communications
Hou Q et al. 2015 intact cell/cell culture, NIH3T3 cells (mouse fibroblast cell line) oxidative stress, DNA damage and apoptosis in mouse embryonic fibroblasts 1,800 MHz 2 W/kg intermittent exposure (5 min on/10 min off) for 0.5, 1, 1.5, 2, 4, 6 or 8 hours mobile phone, GSM, mobile communications
Phillips JL et al. 1998 intact cell/cell culture, Molt-4 cells single-strand breaks (comet assay) 813.5625 MHz 2.4–26 µW/g intermittent 20 min on/off for 2, 3 and 21 hours iDEN, NADC, TDMA, mobile communications
Maes A et al. 1996 intact cell/cell culture sister chromatid exchange 954 MHz 1.5 W/kg continuous for 2 h mobile phone base station, GSM, mobile communications, microwaves
De Iuliis GN et al. 2009 intact cell/cell culture, human spermatozoa sperm motility, sperm vitality, sperm density, DNA damage and production of reactive oxygen species 1.8 GHz 0.4–27.5 W/kg continuous for 16 hr mobile phone, mobile communications
Gorpinchenko I et al. 2014 intact cell/cell culture, human spermatozoa sperm parameter 900–1,800 MHz - intermittent every 10 minutes for 5 hours (standby mode with outgoing calls every 10 minutes) mobile phone, GSM, mobile communications
Schrader T et al. 2011 intact cell/cell culture, FC2 cells (human-hamster hybrid (AL)) cells spindle disturbance 900 MHz 10.7–17.2 mW/kg continuous for 0.5 h mobile phone, GSM, mobile communications, RF field, electric field, magnetic field