Studientyp:
Medizinische/biologische Studie
(experimentelle Studie)
Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.
med./bio.
[Analyse der Proto-Onkogen und Hitzeschockprotein-Genexpression in Zelllinien menschlicher Abstammung, die in vitro mit einem intermittierenden, 1.9 GHz pulsmodulierten Hochfrequenz-Feld exponiert wurden].
Von:
Chauhan V, Mariampillai A, Gajda GB, Thansandote A, McNamee JP
Veröffentlicht in: Int J Radiat Biol 2006; 82 (5): 347-354
Alle Proben wurden mit schein-exponierten, negativen (Inkubator) und positiven (Hitzeschock, 1 h bei 43°C) Kontrollen 0 und 18 Stunden nach der Exposition verglichen.
Dawe AS et al.
(2008):
Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not induce hsp16-1 heat-shock gene expression in Caenorhabditis elegans.
Hirose H et al.
(2007):
Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.
Friedman J et al.
(2007):
Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies.
Zhao R et al.
(2007):
Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay.
Chauhan V et al.
(2007):
Analysis of gene expression in two human-derived cell lines exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field.
Lee JS et al.
(2006):
Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes.
Qutob SS et al.
(2006):
Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field.
Whitehead TD et al.
(2006):
Gene expression does not change significantly in C3H 10T(1/2) cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation.
Remondini D et al.
(2006):
Gene expression changes in human cells after exposure to mobile phone microwaves.
Whitehead TD et al.
(2006):
The number of genes changing expression after chronic exposure to Code Division Multiple Access or Frequency DMA radiofrequency radiation does not exceed the false-positive rate.
Chauhan V et al.
(2006):
Gene Expression Analysis of a Human Lymphoblastoma Cell Line Exposed In Vitro to an Intermittent 1.9 GHz Pulse-Modulated Radiofrequency Field.
Zeng Q et al.
(2006):
Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells.
Nylund R et al.
(2006):
Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent.
Lantow M et al.
(2006):
Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation.
Simko M et al.
(2006):
Hsp70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells.
Lim HB et al.
(2005):
Effect of 900 MHz electromagnetic fields on nonthermal induction of heat-shock proteins in human leukocytes.
Laszlo A et al.
(2005):
The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves.
Miyakoshi J et al.
(2005):
Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells.
Nikolova T et al.
(2005):
Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells.
Whitehead TD et al.
(2005):
Expression of the proto-oncogene Fos after exposure to radiofrequency radiation relevant to wireless communications.
Czyz J et al.
(2004):
High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells.
Tian F et al.
(2002):
Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5W/kg in human glioma MO54 cells.
Leszczynski D et al.
(2002):
Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects.
Pacini S et al.
(2002):
Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts.
Goswami PC et al.
(1999):
Proto-oncogene mRNA levels and activities of multiple transcription factors in C3H 10T 1/2 murine embryonic fibroblasts exposed to 835.62 and 847.74 MHz cellular phone communication frequency radiation.
Ivaschuk OI et al.
(1997):
Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression.
Um diese Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.